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ABSTRACT

FQL is a database query language based upon recent work by

John Backus in the area of functional programming systems

and has been designed and developed in an attempt to provide

a powerful formalism for the expression of complex database

queries. As such, FQL differs from other database query

languages in several important respects: there is no notion

of data currency; full computational power is provided;

complex queries may be developed incrementally; and the

language itself is independent of any database management

system. Though currently implemented with an interface to a

CODASYL system, the data-model underlying the language

proves sufficiently general and would allow use with other

types of database systems. This document describes the

syntactic and semantic rudiments of FQL through a set of

examples, addresses certain issues of implementation, and

considers various topics for future research and

development.
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1.0 MOTIVATION

A basic function of any database management system is

to facilitate interrogation of an Integrated collection of

information by a variety of users [Date 77, Mart 751. This

mode of interaction between user and database -- the

query -- is generally characterized as a selective retrieval

of information (possibly subject to further computation)

which, nevertheless, leaves the database intact. To this

end, database management systems often provide some sort of

language whereby the user may formally specify his query.

While often adequate for simple applications, a majority of

these languages currently in use prove to be either

cumbersome or else totally inadequate for the expression of

complex database queries. (In support of this claim one

need only consider the verbosity of the CODASYL DML on the

one hand and the lack of computational power within most

relational systems on the other hand.) This situation has,

to a large extent, given impetus for the development of FQL,

a functional database query language distinguished by virtue

of its power, modularity, and precision.

The kinds of facilities presently available for

retrieving information from a database management system are

extraordinarily varied. At one extreme we find a class of

4" languages best represented by the CODASYL Data Manipulation

Language (DML); what essentially amounts to a collection of

low-level subroutines which may be embedded in some standard
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programming language and which encapsulate the more

primitive search and retrieval capabilities of the database

management system [Coda 71, Tayl 76]. Although one could

argue for the flexibility this type of interface might

afford, a major shortcoming lies with its inherently

*record-at-a-time" mode *of processing, as this tends to

obfuscate even the simplest of queries.

This fact becomes particularly evident when one

examines constructs such as FIND, the basic mechanism within

the CODASYL DML for incremental (i.e., record-at-a-time)

navigation through the database. Several points are worth

noting: First, since mechanisms such as FIND do operate

only on a record-at-a-time basis, their effective use

depends upon control structures provided by a host

programming language; one must explicitly account for all

details of iteration and selection when, say, processing a

subset of a collection of records contingent upon some

condition. This lack of control abstraction within the

CODASYL DML will, as a rule, promote verbosity through

procedural over-specification -- concern with how to

realize a particular query in lieu of "what" the query

actually entails. And secondly mechanisms such as FIND,

inevitably bound up with the notion of data currency, are

invoked not for any value they may return but rather for the

numerous effects they induce upon a global collection of

pointers (currents) into the database. Not only does this

'type of behavior on the part of FIND shoulder the user with
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additional responsibility -- if not consciously managed, the

side-effects of FIND can be potentially deleterious -- but

it renders queries written using the CODASYL DML virtually

impossible to analyze from a formal point of view.

The alternative to the record-at-a-time mode of

processing exemplified by the CODASYL DML resides in a host

of query languages based largely upon the relational algebra

and, to a lesser extent, upon the relational calculus

[Codd 70, Codd 71, Cham 74, Cham 76, Ston 76, Zloo 75].

Unlike the CODASYL DML in several respects, the relational

languages provide, as their most salient feature, an elegant

set of high-level operators for manipulating entire

collections of records (relations of tuples to be more

precise); these operators may, moreover, be combined with

one another to form powerful relational expressions having

attractive mathematical properties. Since these operators

implicitly subsume the details of iterative and selective

control logic, not to mention the whole issue of data

currency, relational languages are commonly implemented as

"stand-alone" systems -- independent of any host programming

language -- and, as such, have become the paradigm for

interactive database query.

While the relational languages seem to rectify a number

A. of shortcomings found in the CODASYL DML, they, too, have

their drawbacks. Specifically, the relational languages are

lacking in computational power; one cannot, for instance,
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perform simple arithmetic in many of these systems Let alone

define a recursive function. (The CODASYL DML enjoys a

distinct advantage in this regard by virtue of its embedding

in a general-purpose programming language, though recursion

can be awkward if not supported directly by the host

facility.) While certain relational systems do offer some-

arithmetic capabilities (e.g., SEQUEL) these languages are

by no means complete in a formal-sense and, in fact, remain

incapable of processing any sort of recursive data-structure

[Aho 791 .

FQL is an functional language: it is founded upon a

model of computation in which the combination of functions

using a pre-defined set of mechanisms, or functionals, into

expressions is the only control structure. More

specifically, the language embodies many of the ideas

expounded by Backus concerning functional programming

systems [Back 181. Unlike conventional programming

facilities, the means for manipulating an explicit data

reference (i.e., the assignment of variables) has been

purposely omitted from FQL. Rather, the language furnishes

its user with the tools for combining a given set of

4 primitive operators so as to form more powerful functions.

As such, FQL differs from other database query languages in

several important respects:
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* 1. There is no notion of data currency: queries that
operate upon entire collections of objects may be
readily formulated without recourse to the
"record-at-a-time" mode of processing associated
with the CODASYL DML.

2. Full computational power is provided: unlike the
relational languages, FQL has the capabilities of a
general-purpose programming facility and,
especially, supports the definition of recursive
functions.

3. Complex queries may be developed incrementally: a
query within FQL is but another function which,
using the mechanisms furnished by the language, can
be combined with other queries; in particular, FQL
maintains a facility for definition of new
functions thereby allowing hierarchic encapsulation
of detail (something conspicuously absent from
other query languages).

4. The language itself is independent of any database
management system: though currently implemented
with an interface to a CODASYL system, the language
employs a sufficiently general data-modp' such that
use with other types of database management systems
would be possible; indeed, FQL could well serve as
a common medium of communication wlthin a network
of heterogeneous database facilities.

(It should be emphasized that one should not view FQL

as the "ideal" end-user query language; such a language, in

the opinion of this author, does not exist. Rather, it is

presented as a precise and powerful formalism that can serve

both as a tool for those wishing to construct complex

database queries and as an intermediate language into which

one may readily translate his "favorite" query protocol.)

The remainder of this document is devoted to a detailed

explication of FQL. Section 2.0 describes the syntactic and

* semantic rudiments of the language: beginning with a brief

# I exposition of FQL's underlying data-model, the various
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mechanisms afforded by the language for combining functions

together with simple examples of their application are then

presented; more sophisticated queries are discussed

subsequently. Section 3.0 addresses certain issues of

implementation, summarizes the more important internal data-

and control structures, and traces the system's execution of

a simple query. (In its current form, FOL is implemented in

PASCAL as an interface to SEED [Gerr 78], a CODASYL-based

database management system written in FORTRAN, and is

running on a DEC-10.) Finally, section 4.0 considers various

areas for future research and development.

J.
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2.0 THE LANGUAGE

2.1 A Functional Data-Model

Since FQL provides its user with only the ability to

combine functions, the language assumes, for its underlying

data-model, a functional view of databases. That is to say,

we regard a database as comprising a collection of functions

over various data-types (Ship 7. To illustrate, consider

the functional schema of a (very simple) database built

around entities of type EMPLOYEE and of type DEPARTMENT:

The nodes of this graph denote the particular data-types

present within the database while its directed edges

represent mappings between these types; thus given an

EMPLOYEE the function DEPT would return that DEPARTMENT,

say, in which he works. In addition to providing a function

from EMPLOYEE to DEPARTMENT, this database fur~tshez

oeaosthat mpthese entities into the fmla, basic

types: the functions ENAME and DNAME each return a

CHAR(acter string); the function SALcary) yields a

NUM(eric) value; and the BOOL(ean) function MARRIED serves

has a predicate. Using a more conventional notation we

. ,onl ..... esent 'i nm mmunm' w ithinm m th m" d ata as ... ... it directed edges.. .
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summarize the functional schema of this database as follows:

DEPT : EMPLOYEE ->DEPARTMENT

ENAME : EMPLOYEE ->CHAR

SAL : EMPLOYEE N> UM
MARRIED : EMPLOYEE ->BOOL

DNAME : DEPARTMENT ->CHAR

Of the five data-types seen here, only the types CHAR,

NUM, and BOOL are considered standard in that they exist

independently of any particular database schema. The types

EMPLOYEE and DEPARTMENT, together with the functions defined

over them, are, on the other hand, specific to this

database. We should, at this time, also mention that these

latter types are not to be regarded as structured (in the

sense of a record or tuple) but rather as scalar; thus an

EMPLOYEE is no less atomic than the NUM(ber) denoting his

salary. Unlike the standard scalars, though, one cannot

speak of printing values of type EMPLOYEE or of type

DEPARTMENT per se. Information about these entities may,

however, be obtained through application of those functions

which do map these objects into some "printable" type (e.g.,

CHAR, NUM, or BOOL).

(Viewing entities such as EMPLOYEE or DEPARTMENT as

scalars should not, of course, imply anything about their

physical representation within a particular database

management system; the functional model is, after all, only

intended as an abstraction. Indeed, -when imposing a

functional view upon a CODASYL system, types such as
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EMPLOYEE and DEPARTMENT are, in fact, the records within a

schema; the items these records contain become, in turn,

the functions which map these database-dependent types into

the standard scalars.)

We have, until now, considered only those functions

provided by the database which map scalars into other

scalars. To deal with operators that produce, say, the set

of employees who work in a given department, we must augment

our functional view of databases to include the inverse of

functions as well. Knowing, for instance, that the function

DEPT takes an EMPLOYEE into his DEPARTMENT, its inverse,

written IDEPT, would map a DEPARTMENT into the sequence of

EMPLOYEEs belonging to it; the function IDNAME would, as

another example, map a CHAR(acter string) into an ordered

collection of DEPARTMENTs, each of which bear the same name.

(Strictly speaking, IDEPT and IDNAME are not the true

mathematical inverses of DEPT and DNAME respectively, since

the inverse of a function should contain no notion of

sequentiality.) In referring to these sequences of

homogeneously-typed objects we shall use the more abstract

term stream; a stream, following Landin [Land 65) and Burge

[Burg 75], is a "virtual" sequence of objects whose physical

representation should be of no concern to its

processor -- it may be a list in primary store, a file in

secondary store, a generating function, or even some

combination of these. Again, we summarize using

conventional notation, where type specifications prefixed
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with a 'denote a stream of such objects:

IDEPT : DEPARTMENT -> *EMPLOYEE
IDNAME : CHAR -> *DEPARTMENT

(It should be stressed that the "I" in no way

constitutes a general "inversion" operator but rather serves

as a notational convention. Whether or not the inverse of a

particular function is available depends entirely upon the

database: there is no guarantee that, because the function

SAL exists, its inverse, !SAL, will also be present.

Database systems do, though, usually employ sophisticated

mechanisms for implementing the inverses of functions when

they are required. The function IDEPT, for example, could

be realized by a CODASYL set whose owner is a DEPARTMENT

record and whose members are EMPLOYEE records; the function

DEPT itself is suggested by the linkage beturpen each member

of the set and its unique owner. Likewise, the designation

of particular items within records as calc key

(descriptors) gives rise to functions such as IONAME which

effectively provide direct access, usually by means of a

hash table, to certain records within a file.)

Another means for gaining access to collections of

objects is through a number of constant functions which

yield sequences comprising all instances of each

database-dependent scalar type currently in the system. (A

constant function is one whose value is independent of its

argument.) In our sample database these include the constant
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functions !EMPLOYEE and IDEPARTMENT which return streams

whose elements would, respectively, be of type EMPLOYEE and

of type DEPARTMENT. (Of course, the functions IEMPLOYEE and

!DEPARTMENT are not truly constants, for not only are they

database-dependent but their values can, and often do,

change over the course of time; as far as their actual

implementation is concerned, functions such as these are

simply the "master" files within any database management

system.) In summary, then:

!EMPLOYEE : -> *EMPLOYEE
IDEPARTMENT : -> *DEPARTMENT

(The absence of a type specification to the left of the ->

serves to indicate a constant mapping.) As we shall soon

see, queries are but a special kind of constant -- albeit

database-dependent -- function.

(FQL supports, in addition to streams, one other mode

for structuring information -- the tuple. Since, though,

our functional data-model precludes the existence of tuples

within the database we have not dealt with them at-this

time; tuples do, though, play an important role within the

language and will be treated subsequently.)

2.2 Mechanisms For Combining Functions

Given that the database comprises a collection of

functions over various data-types, we now need
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mechanisms -- functional forms as Backus terms them -- for

combining these primitive operators in order to create new

and more powerful functions; and ultimately to formulate

queries. FL provides four such functional

forms -- composition, extension, restriction, and

construction -- that are individually exemplified below

using our database of EMPLOYEEs and DEPARTMENTs presented in

section 2.1. So as to facilitate the use of these

mechanisms, a simple means for function definition has been

included within the language. In general, the format for

definition of a new function within FQL is as follows:

<name>: (input type> -> <output type>

<functional expression>;

In words, each definition associates an arbitrary name with

a functional expression such that any occurance of the

former within some other expression may be replaced by the

latter. Each definition also specifies the new function's

input- and output type which must concord with the domain

and range implied by its body.

Composition

F.. ~ -Among the functional forms furnished by FQL, the most

fundamental is composition. intuitively, composition is a

coupling of two functions such that the output of one serves
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as input for the other. One can, for instance, compose the

operator DEPT (a mapping from EMPLOYEE to DEPARTMENT) with

the operator DNAME (a mapping from DEPARTMENT to CHAR) so as

to form a functional expression which, given an employee,

returns the name of that department in which he works. (A

functional expression in general is the composition of one

or more functions.) In this way, we may define a new

function called DEPTNAME:

DEPTNAME: EMPLOYEE -> CHAR -

DEPT.DNAME

DEPTNAME is here declared as a mapping from EMPLOYEE to

CHAR(acter string) and is defined as the composition of DEPT

with DNAME, denoted by the operator w.0. As another

example, let us define the function COWORKERS that returns,

for a given employee, those employees with whom he works:

COWORKERS : EMPLOYEE -> *EMPLOYEE -

DEPT. IDEPT ;

We should, at this time, point out that all functions

are composed, and hence evaluated, from left to right

(reverse Polish); within the body of COWORKERS the

DEPARTMENT gotten by applying DEPT to some EMPLOYEE becomes

the operand for IDEPT which, in turn, produces as its value

P' a stream of employees (i.e., *EMPLOYEE).- (Using reverse

Polish for functional composition in fact seems quite

natural when confronted with a database, as the left to
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right order of evaluation actually determines a

corresponding path through the database schema.) To

summarize more formally: if f and g are functions such that

f: cx -> and g: ( -> - then their composition, denoted f.g,

is a mapping of the form oC->J, where Greek letters signify

arbitrary data-types. In general, then, a functional

expression of the form f "f....9 f. accepts, as input, a

value from the domain of function f, and produces, as

output, a value from the range of function fh.

Extension

Extension is one of two functional forms that

specifically map streams into other streams. Roughly

speaking, extension is a for each operator in that it allows

for the uniform processing of some collection of objects.

To consider an example, the function SAL (a mapping from

EMPLOYEE to NUM) may be "extended" into a function written

*SAL such that, given a stream of employees (*EMPLOYEE), it

returns a stream of their salaries (*NUM) by applying the

function SAL to each EMPLOYEE in turn. (The use of the 0*0

here in describing both functions and types is intended to

underscore the similarity between them.) Needless to say, a

function such as *SAL may be composed with yet other

functions in order to form expressions. Thus, one can

define a function DEPT-SALS that yields the salaries of each

employee within a particular department:
E I
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DEPT-SALS: DEPARTMENT -> *NUN =

IDEPT.*SAL

Here, the result of applying IDEPT gives a stream of

EMPLOYEEs over which the function SAL is then extended to

produce a stream of NUMs. Indeed, we may even "extend" this

particular function so that, given a stream of departments

(*DEPARTMENT) it would return a stream of streams of their

workers' salaries (**NUN). In summary then: if f is a

function such that f: OC-> (3 then its extension, denoted *',

is a mapping of the form *C-> *i9. Note that the arbitrary

function, f, being extended is in no way limited to

primitive operators or the names of other functions defined

previously but may itself be an explicit instance of further

functional combination.

Restriction

Restriction, like extension, maps streams into other

streams. Unlike extension, though, which preserves the

length of its operand (but possibily altering the type of

its components), restriction will always return the same

type of stream as given though generally with fewer

elements. Specifically, restriction filters a stream by a

predicate defined over a typical element: the function

SIMARRIED (where '10 signals restriction) would therefore map

a stream of EMPLOYEEs into a sub-stream of EMPLOYEEs

satisfying the condition that they be MARRIED. We may,

L__
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then, restrict the result of our earlier function COWORKERS

in the following manner:

MARRIED-COWORKERS: EMPLOYEE -> *EMPLOYEE

CONORKERS. IMARRIED

And in general: if p is a predicate such that p: 0-> BOOL

then the restriction of a stream *C, denoted Ip, is a

transformation *0-> *C. Again, the predicate need not be

simple though, *for the moment, we lack the tools for forming

more complex boolean expressions.

Construction

As mentioned at the end of section 2.1, FQL supports

the structuring of data into tuples. A tuple, complementing

the notion of a stream, is a heterogeneous aggregation of

some fixed number of objects. Construction allows for the

collateral application of a number of functional expressions

to a common argument, thereby yielding a tuple of their

respective results. In describing these tuples we would, as

an example, use the notation [CHAR,NUM] to denote the

data-type of tuples of type CHAR and NUM. This type of

structure would arise if, for instance, one wished to

produce the name and salary of a given employee. Using

construction, this is realized by the function [ENAME,SALJ.

(Again, observe the conformity in notation between function

and type.) As a more substantial example, let us define a

function that returns both the name of a particular
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employee's department together with the salaries of his

co-workers:

DNAME-AND-MARRIEDWORKERS-SALS: EMPLOYEE -> [CHAR,*NUM] -

DEPT.[DNAME,!DEPT. IMARRIED.*SALI ;

Analyzing this definition, the function DEPT produces a

DEPARTMENT which, in turn, serves as an operand for both the

operator DNAME and the mapping that results from composing

the restriction of !DEPT with the extension of SAL (i'.e.,

DEPARTMENT->*NUM), thereby constructing a tuple comprising

both a department name and a stream of salaries. By way of

summary: if fl , fz, ... f. are functions such that

f: fZ : C->t z 
, ... f: o -> , then their

construction, denoted [f1 ,f ,...f], is mapping of the form

O(-> [, . ] . Though tuples are indeed useful for

extrapolating a multiplicity of data about entities such as

EMPLOYEEs or DEPARTMENTs, they will become increasingly

important when, for instance, the standard arithmetic

operators are introduced; since, by design, all FOL

functions (primitive or composite) are monadic, the function

"plus" is taken as a mapping from a pair of numbers into a

single number; e.g., +: [NUM,NUMJ->NUM.

f I_
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A query in FQL is a constant function whose result is a

value of some "printable" type, where the type of a

printable object is recursively defined as either that of a

standard scalar, a tuple of printables, or a stream of such.

As for a query being a constant mapping, this implies it be

the composition of one or more functions such that the first

of these is a constant operator (either primitive or the

construction of yet other constants). By way of example,

consider a query which simply gives "the name of each

department currently in the database":

Q: -> *CHAR -

IDEPARTMENT.*DNAME

(Again, the absence of an input-type specification denotes a

constant mapping.) As a more complex example, consider a

query which returns "for every employee the name of his

department together with the salaries of his married

coworkers". Using a function defined previously, the

solution follows trivially:

Q2: -> *[CHAR,*NUM -

IEMPLOYEE.*DNAME-AND-MARRIEDWORKERS-SALS ;

The point to be made here is that complex tasks may be

solved incrementally within FQL through a hierarchy of

function definitions, each encapsulating some lower level of

' detail; certainly, at the highest level, query Q2 is no

more difficult to comprehend than the simpler query Q1.
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Were, though, a mechanism for the definition of new

functions not included within the language, the formulation

of query Q2 would indeed appear more complicated:

Q2': -> *[CHAR,*NUMJ =

IEMPLOYEE.*(DEPT.[DNAME,IDEPT. IMARRIED.*SAL])

(Note that parentheses must be used here to enforce the

order of evaluation.)

To recapitulate, we have viewed a database as a

collection of functions over various data-types and have

presented four functional forms -- composition, extension,

restriction, and construction -- for combining these

functions into new functions, and finally into queries; we

have also introduced two modes for structuring

data -- streams of the form * c and tuples of the form

8. o ... .]~. By way of summary, the FQL syntax of a

function definition, a data-type, a functional expression,

and a function itself is given at this time:

<def> :: <name>: [<type>) -> <type> -.<fexpr>

<type> ::- NUM
:. CHAR
::i BOOL
::m *<type>
::- [<type>(,<type> ]

<fexpr> ::- <function>{.<function>)

.1 -
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<function> ::= <primitive>
: <name>
--= *<function>
::- I<function>
:: [<fexpr>[,<fexpr>f I
::= (<fexpr>)

(Optional components are denoted by "{"..."} while

"{".. .fl signifies that a set of elements may occur an

arbitrary number of times.)

2.3 Standard Functions

The class of queries one can formulate using only those

functions provided by the database is rather limited. To

extend its computational power FQL furnishes an array of

standard -- database independent -- functions including the

familiar arithmetic, relational, and logical operators

together with host of primitives for manipulating

structured data-types. These various functions are

introduced below, grouped into categories as appropriate.

(It should be mentioned that the following listing is in no

way complete or comprehensive; rather, it represents a

selection of useful primitives through which more complex

functions may, if needed, be realized. The reader may, if

he so chooses, omit this material for the time being and

refer back to it when necessary.)
I.,I

,I . . * .
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Arithmetic Operators

The functions +, -, x, /, and MOD are each mappings from the
pair [NUM,NUM] into NUM. The functions /+ and /x perform
addition- and times-reduction on streams of NUMs; i.e.,
they map *NUM into NUM. Given an empty stream these
functions return their respective identities, 0 and 1.

Relational and Boolean Operators

The operators EQ, NE, GT, LT, GE, and LE map either tuples
of the form [NUM,NUM] or of the form [CHAR,CHAR] into a
single BOOL(ean) value. The functions AND and OR each
return a BOOL given a [BOOL,BOOL] pair; the complement NOT
takes a single BOOL into another BOOL. The two reduction
operators, /OR and /AND, represent mappings from *BOOL to
BOOL and, given empty streams, return the values "true" and
"false" respectively.

Constants

The notation #<number> represents a constant mapping of the
type ->NUM whose value is the <number>; the notation
'<character-string>' similarly denotes the mapping ->CHAR.
The function NIL is a constant signifying the empty stream
of any type; i.e., ->*(X.

Basic Stream-Manipulating Primitives

Given a non-empty stream, the operation HD returns its first
element (i.e., *0x->c) while the operation TL returns a
sub-stream containing all but its first element (i.e.,
*0(->*0(). The function CONS takes an element of some type
and a (possibly empty) stream whose elements are of that
same type and returns a new stream in which the individual
element is its "head" while the original stream becomes its
"tail"; i.e., CONS : [0,* ]->*(.

Other Stream-Manipulating Primitives

The function LEN computes the length of a given stream and
is thus a mapping from *N into NUM. CONC concatenates a
pair of streams [ (whose elements are of the same
type) into a single stream *C'; /CONC produces a single
stream *O by "flattening" an arbitrary stream of streams
**0 The operator DISTRIB takes a tuple of the form I*XI]
and returns a stream of tuples *[x,B] with the value of type
(3 effectively paired with each element within the stream of
cK'S.
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Miscellaneous Functions

The function i (i-1,2,...n) selects a component from an
arbitrary n-tuple; i.e., i: [, (2 ,... 3,]->t3L. Finally,
ID represents the identity mapping 0->0(.

In order to demonstrate the use of a number of these

standard functions, we shall consider several queries over

an academic database containing STUDENTs, COURSEs, and

collections of their respective GRADEs. The schema of this

database is given by the following:

SNAME : STUDENT -> CHAR
CNAME : COURSE -> CHAR
MARK GRADE -> NUM
ST-GR : GRADE -> STUDENT
CO-GR : GRADE -> COURSE
!CNAME : CHAR -> *COURSE
!ST-GR : STUDENT-> *GRADE

ICO-GR : COURSE -> *GRADE
ISTUDENT: -> *STUDENT
ICOURSE : -> *COURSE
IGRADE : -> *GRADE

Basically, the functions ST-GR and CO-GR provide the means

for mutual association of STUDENTs and COURSEs through their

common GRADEs: the expression IST-GR.*CO-GR returns a given

student's courses while the expression ICO-(R.*ST-GR
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produces the students enrolled in a particular course.

As an initial example, we wish to know "the average

grade of each student". First, though, let us define the

function AVRG which computes the mean of a stream of

numbers:

AVRG: *NUM -> NUM =

[/+,LEN]./ ;

The function /+ sums the elements of the given stream while

LEN returns its length; this pair of NUM(bers) then serves

as the dividend and divisor for the division operator. The

query itself is expressed by:

Q3: -> *NUM

ISTUDENT.*(IST-GR.*MARK.AVRG)

Here, the operand for AVRG is produced by extending the

operator MARK over each individual student's grades; this

mapping from STUDENT to NUM(ber) in turn is applied to each

student currently in the database.

The next query illustrates the formulation of boolean

expressions using the relational and logical operators

within the language. Specifically, it asks for "the names

of those courses with an enrollment between 10 and 50 in

which some student received a mark below 70". In FQL:

4i
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04: -> *CHAR -

!COURSE. I([P1,P2].AND).*CNAME

The query is formed through restricting the stream of all

COURSEs by the conjunction of predicates P1 and P2 as

specified below (again, observe the use of parentheses to

enforce the scope of the restriction operator); the

function CNAME is then extended over the resulting

sub-stream. The predicates P1 and P2 on individual COURSEs

are defined as follows:

PI: COURSE -> BOOL

!CO-GR.LEN.[[ID,#10].GE,[ID,#50].LE].AND

P2: COURSE -> BOOL -

!CO-GR.*([MARK,#70].LT)./OR ;

The first predicate initially counts the enrollments in the

given course -- the stream produced by !CO-GR; using the

identity operator this number is then propagated through the

ensuing conjunction in which it is compared with the values

10 and 50 (more precisely, with the values of the constant

functions #10 and #50). The second predicate tests for the

presence of some MARK below 70: given the GRADES within the

COURSE, the expression *(IMARK,#70].LT) yields a stream of

BOOL(eans) with the operator /OR returning a value of "true*

if some member of this stream is "true".

# ' '
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As a final example we take up the following task: "the

number of students enrolled in both ENGLISH and HISTORY".

(The trick here, of course, is not to count a student

twice.) To facilitate a solution we first introduce a

function that, given the name of a course, returns the name

of each student enrolled within it:

CLIST: CHAR -> *CHAR =
!CNAME.HD.!CO-GR.*(ST-GR.SNAME)

Observe that while !CNAME produces a stream of courses one

is, in general, only interested in the first of these, thus

the operator HD must be applied; the names of the students

within this course are then extracted via its stream of

individual GRADEs. The query itself may be expressed as

follows:

Q5: -> NUM

['ENGLISH'.CLIST,'HISTORY'.CLISTI.INTERSECT.LEN

(Note here that the query is still a constant function by

virtue of the fact that each expression within the initial

usage of the construction mechanism is itself. a constant.)

Ideally, set-theoretic operators such as INTERSECT should be

furnished by FQL. Since (at present anyway) these operators

are not supported we must resort to the following

definition:

INTERSECT: [*CHAR,*CHAR] - *CHAR

DISTRIB. IMEMBER.*l
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The second stream is distributed over each of the elements

of the first stream, giving a structure of the form

*[CHAR,*CHAR]. The predicate MEMBER (defined below) returns

a value of true for a typical element of this stream of

pairs if its first component (CHAR) is to be found anywhere

within its second component (*CHAR); the extension of the

selector "1" effectively projects the first components of

those pairs satisfying the previous predicate. The function

MEMBER is then defined as follows:

MEMBER: [CHAR,*CHAR] -> BOOL z

[2,1].DISTRIB.*EQ./OR ;

The expression [2,11 effectively reverses its operand so

that DISTRIB may pair the individual CHAR with each element

within the given stream of CHARs; the expression *EQ./OR

returns a value of "true" if one of these pairs satisfies

the equality relation.

2.4 A Bill-of-Materials Processor

As a further demonstration of the power of FQL, we will

attack the infamous bill-of-materials problem which, to this

author's knowledge, eludes solution (or at least an elegant

one) within most database query systems. The difficulty

p. here lies with the fact that the schema required is

inherently recursive: parts contain sub-parts which

themselves are parts; these, in turn, are built out of
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other pat "and so on. The specific task addressed

initially is that of finding "the total cost of a given

part". If we associate with each part a *cost" meaning

either the purchase price (in which case it has no sub-parts

of interest to us) or else the expense of assembly, then the

total cost of a part is its own "cost" added to the total

cost of all of its sub-parts. To complicate matters

somewhat we will assume the components of parts are used in

differing quantities: an engine, for example, may require

four piston assemblies and two carburetors. The following

depicts a possible schema for such a database:

COST PAR PATUM U

PAE PART-CA

PT UAGE>PT CM

CUMP USAGEPR

PNAME : CPAR CH ART
PT : PSAT P>UAGT
COMP : PSAGT P>UAGT

IPART : )*PART

IUSAGE : >*USAGE

The relation between a part and its sub-parts is

represented by the USAGE type. For example, if an engine

requires two carburetors, a USAGE entity will be defined

whose PT is an engine, whose COMP is a carburetor, and whose
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QTY is 2. The expression IPT.*COMP therefore maps a given

PART into a stream of its immediate COMP(onents);

conversely, !COMP.*PT returns a stream of PARTs in which a

given PART is an immediate constituent. We may now define

the (recursive) function TC which computes a part's total

cost:

TC: PART -> NUM m

[!PT.*([COMP.TC,QTYI.x)./+,COST].+

For a given PART, the total-cost (TC) of each of its

sub-parts is multiplied by the required quantity and then

summed together, after which this total is added to the COST

of the original PART.

What is remarkable about this particular function is

that its definition, despite recursion, includes no explicit
--------- a-- 'i-m l

wa' for tera,,atio,,. TIF-TZ-ZS :cn-4r uct n.ormally

associated with termination in recursive functions is

generally not required within FOL.) Yet, computation will

halt since the database is finite. This can be seen by

examining the simplest case: given an atomic part (one with

no sub-parts), application of the function IPT would yield

the empty stream; applying the parenthesized expression to

each element of this stream produces, of course, another

' empty stream; the sum of the empty stream of NUMs is, by

definition, 0 (the identity for addition) which is then

added to the cost of the original part. And assuming the

components of all parts are ultimately atomic the function
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TC will converge. Incorporation of the function into an

appropriate query is left to the reader's imagination.

The next task considered here draws upon several of

FQL's stream-manipulation primitives. Simply, we wish to

know "the bill of materials for a given part". One solution

to this problem essentially involves a depth-first traversal

of the *part-treew within the database as shown by the

following:

DFBOM: PART -> *USAGE =

IPT.*([ID,COMP.DFBOM].CONS)./CONC

Here, each of the USAGEs returned by !PT for the given PART

is CONSed onto the front of the bill-of-materials of that

particular COMP(onent) PART to which it refers; the result,

a stream of streams of USAGEs, is subsequently flattened by

/CONC. Again, this function need not contain any expiiciL

test for terminal conditions: if the stream produced by !PT

is empty for a particular part, the extension of the

interior expression gives another empty stream which, in

fact, serves as the identity for /CONC. The function DFBOM

may then be used to retrieve the name and quantity of each

part within, say, an ENGINE:

(Q6: -> *[CHAR,NMI

'ENGINE'.IPNAME.HD.DFBOM.*[COMP.PNAME,QTY]

*1 " Complementing the solution of this problem through the

function DFBOM one could perform a breadth-first traversal



30.

of (in general) a forest of *part-trees" as well. Consider:

BFBOM: *PART -> *USAGE -

*(!PT.[ID,*COMP.BFBOMJ.CONC)./CONC ;

(It is indeed interesting to note the inherent similarity

between depth- and breadth-first traversal as expressed in

FOL; verification of BFBOM's termination is left as an

exercise for the reader.) The query, then, must be slightly

modified:

Q6': ->*[CHAR,NUM] -

'ENGINE'.!PNAME.BFBOM.*[COMP.PNAME,QTY] ;
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3.0 IMPLEMENTATION

3.1 System Architecture

As the manipulation of streams figures prominently in a

majority of database queries, a fundamental aspect of the

design and implementation of an FQL processor is supporting

the user's perception of continually traversing and

constructing (possibly very long) lists of objects, though

without actually using large amounts of primary or secondary

store. Consider, as an example, a query that yields' "the

department name and salary of each married employee", given

the database described in section 2.1:

!EMPLOYEE. IMARRIED.*[DEPT.DNAME,SAL]

Ignoring, for the moment, issues of efficiency one best

comprehends the semantics of this expression in terms of a

succession of discrete list-processing operations:

!EMPLOYEE generates a physical sequence of all employees

currently in the database; restriction by the predicate

MARRIED effectively causes a complete traversal of this

list, producing as its result a new sequence of employees;

subsequent extension in turn entails a list traversal and

creates yet another sequence (one comprising CHAR-NUM

pairs); this final list is then implicitly output.

* "' While useful conceptually in analyzing the manipulation

, 'of streams within an FOL query, the metaphor of literally

mapping one collection of objects into another would
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certainly prove untenable as a basis for an underlying

implementation. (Many implementations of the relational

languages do, in fact, faithfully adhere to this metaphor;

and performance suffers accordingly due to the overhead

incurred through creation and traversal of temporary files.)

From the point of view of efficiency, the query posed above

ought to be realized more or less along the following lines:

REPEAT
find and get next employee;
IF married THEN BEGIN

find and get employee's department;
print department-name and employee-salary
END

UNTIL end-of-file

Though in principle one could translate functional

expressions within FQL into some standard statement-oriented

formalism, the compilation process becomes extremely complex

particularly when confronted with explicit use of the

language's various "list-processing" primitives -- CONS for

instance -- in conjunction with recursive functions (as in

the "bill-of-materials" problem sketched in section 2.5).

The architecture of the FQL processor described

subsequently has, by in large, been influenced by the work

of Friedman and Wise who have pursued various techniques for

ameliorizing the operational semantics of a class of

applicative list-processing languages (e.g., pure LISP)

rFrie 76a, Frie 771. (There are, though, a number of

significant differences which improve the system's overall

performance as a database query facility; for one, all of
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the stream-manipulating operators together with functionals

such as extension and restriction have been implemented

directly, though in fact many of these may be defined in

terms of a more basic set of primitives.) Following Friedman

and Wise, the FQL processor is essentially an output-driven

interpreter for expressions whose results, if structured,

have computation of their individual components "suspended"

until needed by the system. As a consequence, many queries

apparently necessitating large amounts of intermediate store

(cf. our previous example) will in fact be realized through

a single file traversal with a minimal storage overhead in

which input/output is effectively overlapped with

computation. The following gives a more complete picture of

the system as a whole:

I I I I ;L I

\, ,/

\ /

\ /

I , The compiler produces, as its "object code", an internal

representation of an FQL functional expression, while

peri°orming the usual syntactic and semantic analysis; the

itrpreter evaluates this expression and yields an internal

. .. .. .. iM IJV
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object to be printed by the output-driver. (A resident

database management system furnishes, upon request, both

information pertaining to the schema along with the actual

data of some specific database.) Of particular note is the

fact that the output-driver may itself feed the interpreter

with an internal representation of a functional expression;

in general, these two modules will operate in tandem as a

pair of co-routines.

3.2 Internal Data And Control Structures

Objects

Roughly speaking, the internal data-structure used by

the FOL processor to represent an object -- what the user

sees as a scalar, stream, or tuple -- contains two fields

repectivy ind icatng itsa kind and F4 la. A standard

scalar, for example, would have NUM, CHAR, or BOOL as its

"kind" and an integer, character string, or bit as its

"value"; in the present implementation which interfaces

with a CODASYL database management system a

database-dependent scalar (e.g., an EMPLOYEE) is of "kind"

DBREC and has, for its "value", a reference to some physical

record in secondary store. Graphically, the internal

structure of these various types of scalar objects may be

viewed as-such:Ii I
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I ROOL3eil

Streams are represented within the FQL processor as

objects whose "value" is further decomposed into two

fields --- a head which is another object representing a

typical element of the stream and a tail consisting

essentially of a constant functional expression which, when

applied, produces another internal stream object. Given an

arbitrary stream whose elements are either scalars, tuples,

or themselves streams (i.e., *04), the following would

depict its internal format:

ST AMv r-

By "suspending" generation of the streams tail in this

manner very long (indeed infinite!) sequences may be

efficiently managed.
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Finally, a tuple is represented within the FQL

processor as an object whose "value" includes both its

length, an integer, and its components, an array of objects.

Thus:

I Tu PLr r

I. L---------

We should, though, point out that a typical component, (8C

(litn) is initially represented as a form, a special kind

of object whose "value" comprises a fun and an arg,

respectively a functional expression and an object; only

when this particular member of the tuple is germane to the

computation at hand is this form actually replaced by the

object it denotes -- a scalar, stream, or tuple. Thus the

following transformation occurs when selecting the ith

component of an arbitrary n-tuple for the first time:

F ONl

r "

. . . ..-- -
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To review the various aspects of objects and their

internal representation within the FQL processor it is

instructive to consider the procedure PRINT, the system's

output-driver. First, though, let us summarize the

structure of an FQL object using a PASCAL-like formalism:

TYPE object a RECORD
CASE kind OF
num : (value : integer);
char : (value : characterstring);
bool : (value : boolean);
dbrec : (value : /* secondary storage address */);
stream : (head : object ;

tail : LIST OF function);
tuple : (length : integer ;

components : ARRAY l..length OF object);
form :.(fun : LIST OF function ;

arg : object)
END

(Note that "LIST OF function" -- a departure from standard

PASCAL -- here represents a functional expression.) The

procedure PRINT is itself responsible either for printing

the value of some standard scalar or, given a structured

object, for (recursively) printing the values of its various

elements. Again, the details are specified using a

PASCAL-like formalism:

f I'
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PROCEDURE print (ob : object);
BEGIN

CASE ob.kind OF
num,char,bool : write (ob.value);
stream : BEGIN
write ('');
WHILE not empty (ob) DO BEGIN

print (ob.head);
ob :- apply (ob.tail,f'l)
END;

write ('1')
END;

tuple : BEGIN
write ('[');
FOR i := 1 TO ob.length DO BEGIN

eval (ob.components[i]);
print (ob.components[i])
END;

write (']')
END

END
END

Note that when given a stream the output-driver, after

PRINTing the current "head", must repetitively invoke the

interpreter via the system function APPLY (described below)

in order to generate the remaininq elements within sequence;

the operands to APPLY in this case include the current

stream's "tail" -- a constant mapping -- together with a

value, 1-1, of some arbitrary anonymous object. Likewise,

when given a tuple PRINT calls upon the system procedure

EVAL to coerce each component prior to output.

Functions

The internal representation of a function within the

FQL processor (like that of an object) is tagged according

to its kind. On the one hand, a function may be DEFINED and

therefore has a definition, a functional expression denoted
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by a list of other functions. Graphically, the body of a

function (g) defined as the composition of functions f 1 ,

fz ,.. f,,, may be depicted as follows:

-

On the other hand, a function may be BUILTIN in which case

it has both an opcode and an environment, the latter being a

list of objects. With only a few exceptions, though, the

"environment" field of FQL's various standard functions

remains empty. For instance:

SL . . 1 t4

The 'environment" is, however, necessary when representing a

function that selects, say, the third component of a given

tuple (i.e., the operator 03"). Consider:

,. *
.4 -
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1 sL

The function ITH (the canonical selector for tuples) takes

two operands, one of which is an integral index capable of

being bound or partially applied at "compile time". A

similar situation arises when representing the standard

constants: the FQL functions "#123" and "'JOE'" are

internally denoted by the operator CONSTANT whose

environment would respectively contain an INT and a CHAR.

This notion of generic operations, some of whose

parameters may be bound prematurely, is particularly

prevalent in the representation of database-dependent

functions. With the present CODASYL implementation, the

system internally utilizes five such operators: GENREC

which generates a stream of all current instances of a

particular record-class; GENSET which generates a stream of

all members within a particular set, given the owner record;

OWNER which returns the owner of a particular set, given

some member record; SELECT which retrieves a particular

item from a given record; and INVERT which produces a

stream of records containing a given key. Returning, again,

to the database of section 2.1, the following are the

internal representations of the functions 1EMPLOYEE, IDEPT,

4
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DEPT, DNAME, and :DNAME:

a 41E IM' I IN~

1 rei I ) N A PM-^ V

I'EM LO't'I ' [)(PT I T'(

Here, all database-dependent information has been subsumed

within the environments of a more general set of operators.

Of the four functional forms provided by FQL only the

composition of functions into expressions is indicated

implicitly (a functional expression, as noted above, is

represented as a list: of functions). The other functionals

are denoted explicitly by the operators RESTRICT, EXTEND,

and CONSTRUCT whose environments would (indirectly) contain

other functions as their parameters. The following is the

internal format for both restriction and extension by some

predicate or function and for construction of an arbitrary

n-tuple:

ii) -i '
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Note that although the objects comprising the environments

of these functions are of "kind* FORM, the "arg" field in

general will not be used.

To round out our discussion of functions and their

internal representation within the FQL processor, we shall

focus briefly upon APPLY and EVAL, the major components of

the system's interpreter. First, though, let us summarize

the format of an FQL function:

TYPE function = RECORD
CASE kind OF
defined : (definition : LIST OF function);
builtin : (opcode : /* internal code */ ;

environment : LIST OF object)
END

The function APPLY takes two operands -- a functional

expression (transitively) mapping ot -> 3 and an object of

type oc -- and produces, as its value, an object of type

•~ Specifically:

FUNCTION apply (fexpr : LIST OF function ;
ob : object) : object;

BEGIN
REPEAT
WITH first(fexpr) DO

CASE kind OF
defined : ob := apply (definition,ob);
builtin : ob := subr (opcode,environment,ob)
END;

fexpr := rest (fexpr)
UNTIL null (fexpr);
apply :- ob

END

Each function within the given expression is applied in turn

to the "current" object, with the final result serving as
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the value of APPLY. If a typical function is not primitive

(i.e., is user-defined) then APPLY is invoked recursively on

its "definition"; otherwise, the function's "environment"

together with the current object are passed by SUBR to the

appropriate system routine as designated by the "opcode".

We should, at this time, mention that a number of these

routines -- those especially concerned with

stream-manipulation -- will themselves invoke the function

APPLY in a manner similar to PRINT. Indeed, APPLY is called

from within the procedure EVAL which, given a reference to a

"form", replaces it with the object it denotes:

PROCEDURE eval (ob : object);
BEGIN

CASE ob.kind OF
form : ob := apply (ob.fun,ob.arg);
ELSE :
END

END

This procedure is invariably invoked by those special system

routines implementing FQL operators whose operands are

normally tuples (e.g., +*, AND, CONS, etc.). In essence,

EVAL is used as a mechanism for transforming a parameter

called initially by "name" into one called subsequently by

"value".

3.3 An Example

To better understand the manner in which the internal

_ o

* ersnaino ucin n bet r aiuae
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within the FQL processor, we shall selectively trace the

execution of the sample query posed at the outset in section

3.1: "the department name and salary of each married

employee". Once again, the query may be written as follows:

!EMPLOYEE. IMARRIED. * IDEPT.DNAME,SAL]

Upon entry of this expression into the system the compiler

generates its corresponding internal representation as a

list of functions. That is:

5E B Kj JVI tLT 1N BUL p
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Subsequently, the function APPLY iterates through this

data-structure, producing as its final value a stream of

CHAR-NUM pairs. In the interim, though, several streams of

EMPLOYEEs are generated. The first of these results from

applying the constant function GENREC (viz., !EMPLOYEE) to

some anonymous object, £2:
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(The head of this stream contains a reference to the first

employee in sequence; the tail of this stream is a constant

generic function which, when applied with respect to the

environment shown, returns a stream of the remaining

employees.) This particular object then serves as an operand

for RESTRICT (viz., IMARRIED) which, in turn, APPLYs the

predicate within its environment to the head of the given

stream; and until this predicate tests "true", RESTRICT

will consume the stream by continually APPLYing its tail.

The stream ultimately produced by RESTRICT may, then, look

something like this:

I"1.11 I

e Ft ta;;

(Here, the tail is represented by the constant function
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NEXTRESTRICT whose environment not only includes the

original predicate but the tail of yet another stream of

EMPLOYEEs.) The final result of the query, that object

returned by EXTEND (viz., *[DEPT.DNAME,SALI), is a rather

complex structure whose head is a tuple of forms. In part,

the object is depicted as follows:

U1D P  
L" I " " '

(The environment of the constant function NEXTEXTEND

comprising the tail of this stream would, in turn, not only

include the original function being extended but the tai] of
that stream returned previously by RESTRICT as well.)

As far as output of this object is concerned the

procedure is as follows: PRINT receives a stream, prefixes

rTeeuriyoneto the tramsthad". PRntiono recevea

the output of its elements with a "{", and invokes itself

. recursively on the stream's "head*. PRINT now receives a

tuple whose components, when EVALuated, produce the

department name and salary of the first married employee;
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following their respective computation these scalar values

are output through further calls upon PRINT and are

collectively enclosed in a pair of brackets. The original

invocation of PRINT then proceeds to APPLY the tail of the

given stream; this activates the internal operator

NEXTEXTEND that, in turn, activates the operator

NEXTRESTRICT which finally causes NEXTREC to yield a new

stream of EMPLOYEEs subject to further restriction and

extension. PRINT continues to coerce the elements from the

stream's tail in this manner until empty, at which time a

} is output and the procedure terminates.

Before leaving the topic of implementation, a few words

are in order regarding the issue of storage management.

Within the FOL processor the allocation and (especially) the

reclamation of store proceeds synchronously with the

remainder of the system; which is to say there is no

general-purpose garbage collector. To illustrate this

discipline of storage management, we shall look briefly at

the manner in which PRINT handles streams; indeed, the bulk

of the responsibility for storage management in fact resides

with this procedure which not only creates objects through

invocation of the interpreter but, after output, destroys

them as well [Frie 76b]. Consider, then, the following

amendations to the definition of PRINT found in section 3.2:
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stream : BEGIN
write ('{');
WHILE not empty (ob) DO BEGIN

print (share (ob.head));
obl :- apply (ob.tail,2l);
free (ob);
ob := obl
END;

free (ob);
write ('}')
END

After first PRINTing its "head" and then generating a new

stream (obl) by APPLYing its "tail", storage used by the

current stream (ob) is liberated by the auxiliary procedure

FREE; at which point the new stream produced by APPLY

becomes the current object. (We should mention that in

reality variables such as "ob" and "obl" are only

references, thus the assignment of one object to another

does not require extensive movement of data.) Incidently,

storage is managed in much the same way within APPLY:

application of some function within a given expression to a

"current" object results in a new object; the former is

then FREEd and replaced by the latter.

Another aspect of storage management illustrated by

PRINT concerns the explicit sharing of internal

data-structures. Since this procedure does as a rule

attempt to liberate all storage utilized by its operand, a-
I.

recursive invocation of PRINT upon the "head" of a given

stream will effectively require a copy of this object, lest

I .. .._ _
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the same space will be reclaimed erroneously on multiple

occasions. This process of continually copying internal

objects and functions can, however, become prohibitively

expensive. The alternative adopted within the present

implementation involves the sharing of common data; one

may, though, view these shared objects and functions as

constituting "virtual" copies since the system uses such

data in a "read-only" fashion -- that is to say, these

structures are never selectively updated. Storage is then

managed by means of a reference count maintained for each

internal data-structure: this value, unity upon initial

allocation, is incremented each time an object or function

is SHAREd; when a structure is FREEd, its reference count

is decremented and, if zero, storage is reclaimed after

(recursively) liberating any other objects or functions it

may reference. (Use of this type of storage management

scheme is, however, contingent upon the absence of cyclic

structures.) Indeed, we should point out that large parts of

the data-structures depicted in section 3.3 are shared

throughout execution, thus the overhead incurred through

repetitive attempts at freeing store is in fact minimal.

LL
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4.0 IN PROSPECT

While FQL has proven itself successful in providing a

powerful and structured interface to a CODASYL database

management system, much work remains to be done with the

language. We therefore consider several broad areas for

future research and development:

Syntactic, Semantic, and Pragmatic Enhancements

In its present form FQL is somewhat ungainly as an

end-user query language. This situation may, however, be

alleviated somewhat through a number of enhancements to the

system. For one, the specification of input- and

output-types within function definitions could be eliminated

at the cost of either some run-time checks by the FQL

interpreter or else an inference mechanism within the

compiler. Besides streamlining the user-interface, the

absence of explicit type specifications facilitates

definition of generic or polymorphic operators: one should

not, for instance, have to redefine the function MEMBER, a

mapping from [CHAR,*CHAR] to BOOL (cf. section 2.4), when

given, say, numbers instead of character-strings. This kind

of generality would indeed be necessary were a facility for

defining new functional forms included within the language

since, more often than not, the parameters of functionals

are arbitrary operators of the form f: O ->a-

E '
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Other enhancements to FQL might include matters as

trivial as allowing infix notation for the standard dyadic

operators (e.g., +") which many may find more convenient.

It may also be possible to have the omnipresent ***

functional automatically inserted: much as APL generalizes

its scalar functions over vectors and matrices, most scalar

functions in FOL have an obvious extension over streams,

streams of streams, and so forth.. By simplifying matters in

this way, the function TC defined in section 2.5 becomes

somewhat more readable:

TC = COST + !PT.(QTY x COMP.TC)./+

On a broader scale, we wish to reiterate FQL's potential

role as an intermediate foundation upon which one may build

more elaborate user-interfaces, be they oriented toward the

first-order predicate calculus or natural language.

A Relational Interface

we have suggested that the conceptual differences

between most database management systems can be uniformly

subsumed within the functional data-model underlying FQL.

One of the obvious extensions to the language is

constructing an interface to a relational system. Briefly,

each relation constitutes a database-dependent scalar and

accordingly defines a collection of functions over that

type, one for each subset of the relation's domains. Thus,

using conventional relational notation, if

L1



52.

EMPLOYEE: (ENAME,MARRIED,SAL,DNAME)

describes a relation then, within FQL's functional

data-model, there exists a data-type EMPLOYEE together with

functions such that:

EMPLOYEE<ENAME>: EMPLOYEE -> CHAR
EMPLOYEE<MARRIED,SAL>: EMPLOYEE -> [BOOL,NUM]
EMPLOYEE<DNAME>: EMPLOYEE -> CHAR

etc.

Generally, given a relation R and a subset d, , d ,...d. of

its domains, there is a function denoted by R<d, ,d2,...dk>

which maps into the data-type (tItZ,...tk] where t-L is the

type of dL (li5k). (first normal form guarantees that such

data-types will always be printable.) It is then an easy

matter to realize both these functions together with their

inverse using the operators of the relational algebra or

calculus, though the problem of producing efficient

relational queries from an FQL expression requires further

study.

It is interesting to note that a relational database

with added semantics (the Smiths' aggregation model is a

good example [Smit 771) often gives rise to a richer

functional representation. The knowledge, for instance,

that each value within the domain EMPLOYEE.DNAME serves as a

unique key of some other relation (say DEPARTMENT) implies a

,. , direct mapping between EMPLOYEE and DEPARTMENT (a "natural"

join) and allows inference of schemata not unlike those used

LL
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throughout this document.

The Update Problem

While FQL does furnish its user with the means for

retrieving information from a database management system,

the language at this time contains no general mechanism for

updating the content of a particular database; that is to

say, FQL may be employed for queries but not for

transactions. The problem of update is particularly acute

within FQL since, as a rule, a functional programming

language will preclude the assignment of variables. One

solution is to relax this constraint somewhat and adopt a

convention whereby all output from a "top-level" FQL

expression must be directed (assigned) to some logical

consumer. For instance, a query that returns *the salary of

each married employee", given the database of section 2.1,

in one sense involves assignment of the value returned by an

appropriate FOL expression to the teletype:

!EMPLOYEE.IMARRIED.*SAL -> TTY;

(Conceptually, it is this explicit coupling of an expression

to some consumer that initiates computation of the former 's

value.)

On the other hand, updating the database may, in the

abstract, be viewed as assigning the output of an FQL

expressIon to a particular database-dependent function.

Consider, as an example, a transaction which "adds ten
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dollars to the salary of all married employees":

IEMPLOYEE.IMARRIED.*[ID,ISAL,#l0.+) > SAL ;

Here, the expression to the left produces, as its value, a

"function' compatible with SAL; literally, a stream of

[EMPLOYEE,NUM] pairs. When consumed by SAL, this explicit

denotation of a mapping may actually be used to direct the

update of the database, though in principle it is the

function itself that has been altered. Addition and.

deletion of database-dependent scalars can be similarly

accomodated by assignment to functions such as !EMPLOYEE.

A Functional Database Management System

Were FQL used as a common mode of communication within

a network of heterogeneous databases, it would become

readily apparent that supplementary database management

facilites are not only desirable but in certain cases

necessary: a query issued by some node within the network

against a database at some other node may, due to a lack of

computational power at the remote site, zequire transfer of

intermediate results to local storage in order to complete

processing. This raises the question of constructing a

"functional" database management system -- one whose

architecture best realizes the more abstract data-model

underlying FQL. Within such a system, the schema of a

particular-database would be described simply in terms of a

collection of functions over various data-types; given this

.4i
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kind of behavioral specification, the system may then

exercise a degree of latitude in choosing an appropriate

physical representation. The functional database management

system should, moreover, be extensible and permit not only

the installation of new functions into a database but the

declaration of new data-types as well.

In retrospect, the most important lesson learned from the

design, development, and documentation of FQL has been that

functional programming, long an area of theoretical

interest, possesses practical value as well. Predicating a

discipline of solving problems solely through the

composition of functions upon "real-world" situations can be

fruitful as well as exciting. It is the hope of this author

that FQL will both enlighten and inspire others.
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